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Abstract 
 
MP_Lite is a light-weight message-passing library designed to deliver the 
maximum performance to applications in a portable and user-friendly manner.  It 
supports a subset of the most commonly used MPI commands, or it can be run 
using its own simpler syntax.  The high level of performance is achieved by 
implementing a core set of communication primitives in a very clean fashion.  
MP_Lite resorts to extra buffering only when necessary.  Its small size also 
makes it an ideal tool for performing message-passing research.  On Unix 
clusters, MP_Lite can run as a thin layer on top of TCP, providing all the 
performance that TCP offers for applications that can take advantage of this 
restricted mode.  The default signal based interrupt driven mode is more robust 
and still provides around 90% of the TCP performance on Gigabit Ethernet 
networks.  Current research involves the development of an MP_Lite module for 
the M-VIA OS-bypass library.  Bypassing the OS reduces the message latency 
and streamlines the flow of data to the network hardware.  Reducing the 
memory-to-memory copies puts much less strain on the memory bus, allowing 
more of the full bandwidth of the PCI bus to be realized when coupled with 
Gigabit-level networking.  MP_Lite also has the capability of striping data across 
multiple network interfaces per computer.  If done at the TCP level, dual Fast 
Ethernet interfaces double the performance for PC clusters at a minimal increase 
to the overall cost.  Current work with the M-VIA module allows effective 
channel bonding of at least three Fast Ethernet interfaces per machine for PC 
clusters, providing a scalable networking solution for low cost clusters. 
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1  Introduction 
 
The MPI standard [1-2] and its many implementations [3-4] provide a consistent 
set of functions available on almost every type of multiprocessor system.  This 
standardization of the syntax and functionality for message-passing systems 
provides a uniform interface from the application to the underlying 
communication network.  Programs can now use a common set of 
communication calls that perform the same in a very wide variety of 
multiprocessor environments. 
 While the MPI standard provides portability, the native communication 
libraries and underlying communication layers that the MPI implementations are 
built upon typically offer much better performance.  Since the performance 
differences may be as great as a factor of two in both bandwidth and latency, 
there is a strong temptation to use the native libraries at the expense of the 
portability that MPI offers.  For PC/workstation clusters, the inter-processor 
communication rate is already much slower than in traditional massively parallel 
processing (MPP) systems so it is vital to squeeze every bit of performance out 
of the message-passing system. 
 The inefficiencies in MPI implementations can come from several 
sources.  The MPI standard itself imposes many challenges to implementers.  
The choices to support a wildcard (MPI_ANY_SOURCE) for the source in a 
receive function, out-of-order messages, and byte mismatches between send and 
receive pairs can all lead to extra buffering and complicate internal queuing 
systems.   

MPICH and LAM are the two most common public domain MPI 
implementations.   Both provide support for a few dozen multiprocessor 
environments, which necessarily requires a multi-layered programming 
approach.  This can easily lead to extra buffering of all messages.  The additional 
memory-to-memory copies reduce the communication bandwidth and increase 
the latency.  
 The ultimate goal of the research presented here is to understand exactly 
where the inefficiencies come from and to make MPI and its implementations 
more efficient.  The source codes for MPICH and LAM are freely available, but 
they are very complex codes that have a steep learning curve for users who wish 
to make modifications.  They are geared for production environments, not 
message-passing research. 
 The MP_Lite library [5] is smaller and much easier to work with.  It is 
ideal for performing message-passing research that can eventually be used to 
improve full MPI implementations and possibly influence the MPI standard 
itself.  The core subset of MPI functions supported is enough to handle many 
MPI applications, and represents enough of the MPI standard to provide a 
reasonable test for message-passing research.  In other words, the benefits from 
research with MP_Lite should also be realizable within any full MPI 
implementation. 
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2  The MP_Lite message-passing library 
 
MP_Lite is a light-weight message-passing library that delivers the performance 
of the underlying communication layer while maintaining portability, all in a 
user-friendly manner.  It was born out of the need to squeeze every bit of 
performance from the inter-processor communication between nodes in 
PC/workstation clusters, where the Fast Ethernet and even Gigabit Ethernet 
speeds are much slower than communication rates in traditional MPP systems.   
It has also found a home on MPP systems like the Cray T3E where there is a 
large difference between the performance of MPI and the native SHMEM 
communication library.   
 MP_Lite provides the core set of functionality that MPI and most other 
message-passing libraries [6-7] have, but does so in a streamlined manner that 
allows it to deliver the maximum performance to the application layer.   The 
small size of the code and its clean nature make it easy to modify, making it an 
ideal research tool for studying inter-processor and inter-process 
communications. 
 The library is designed to be user-friendly at many levels.  The small 
size makes it easy to take and install anywhere, compiling in well under a 
minute. The library can be recompiled into several debugging levels to assist in 
tracking down communication related bugs.  A simple profiling system makes it 
easy to monitor and tune the performance of codes.  When the communication 
functions block for longer than a user definable panic time, the message-passing 
system times out and dumps the current state of the message queues to provide 
help in deciphering any problems. 

MP_Lite has its own simpler syntax that can be used instead of the MPI 
syntax.  There is no support for communicators to subdivide the nodes for global 
operations, and the data types are handled by using slight variations of the 
function calls for each data type.  This syntax provides much more readable 
code, and getting rid of the abstraction also has the benefit of eliminating the 
need for the INCLUDE “mpif.h” statement in each FORTRAN subroutine that 
has MPI function calls.  Below is an example of a global summation of an 
integer array of length 10, and a send function of 20 doubles to node 5 using a 
message tag of 0. 

 
 MP_iSum( iarray, 10 ); 
 
 MP_dSend( darray, 20, 5, 0 ); 
 
 Most users will probably choose to use the MPI syntax when using 
MP_Lite.  There is absolutely no loss in performance when using MPI wrappers 
in MP_Lite.  The trade-off with MP_Lite is that it only provides a basic set of 
communication primitives, which is a subset of the many offerings of MPI.  This 
is enough to support a large portion of the scalable codes around, and it is easy to 
add more functionality as needed.  However, MP_Lite would not be appropriate 
for more complex codes that make use of the abstraction of communicators to 
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deal with multiple levels of parallelism.  MP_Lite will always be kept as a light-
weight, high performance alternative to complete MPI implementations. 
 
 

 
 
 
Figure 1:  Diagram of the structure of MP_Lite showing the modules that have 
                 been implemented. 
 
2.1  How MP_Lite works 
 
Figure 1 shows schematically how the MP_Lite library is organized. 
Applications can use the MP_Lite function calls directly, or they can access 
MP_Lite using MPI without modification as long as the code is restricted to the 
subset of MPI functions supported. 
 The intermediate level contains support for all the collective operations, 
including global sum, min, and max operations as well as a barrier 
synchronization.  There are also Cartesian coordinate functions, I/O functions, 
advanced timing functions, and support for a variety of other ongoing areas of 
research.  

These functions are all built upon the point to point communications 
implemented in each of the architecture specific modules.  These basic 
communication primitives are written on top of the underlying communication 
layer.  For Linux clusters, this includes four possibilities.  Communications 
within an SMP node can occur using TCP or using shared-memory segments.  
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There are then two modes that can be used for TCP communications; a 
synchronous mode that is just a thin layer on top of TCP, and an asynchronous or 
interrupt driven mode that is more robust.  Current work is in progress on an 
M-VIA [8] module that bypasses the operating system to provide lower latency 
and better bandwidth.  There is also a module written on the Cray SHMEM 
library allows MP_Lite to provide twice the performance of MPI on the 
Cray T3E. 

Each of these modules implements the blocking and asynchronous send 
and receive commands, as well as the initialization and cleanup for the message-
passing system.  The implementations vary in detail, but the resulting 
functionality provided to the higher-level communication functions is the same.  
Send and receive queues must be carefully managed to minimize the buffering of 
messages when possible.  The best performance is delivered when the 
application programmer cooperates by preposting receives, which allows the 
messages to be put directly into user space without any additional buffering.  
Out-of-order messages from the same node, posting receives where the number 
of bytes is larger than the actual message sent, and using the 
MPI_ANY_SOURCE wildcard for the source in a receive function can all hurt 
the performance by imposing additional buffering. 

Applications are launched using a simple mprun shell script that is 
rsh/ssh-based for Unix systems, or defaults to mpprun or mpirun when 
appropriate.  The mprun script caches all launch data to a configuration file, 
allowing subsequent launches to utilize the same information without needing to 
retype it each time. 

Each node generates a .nodeX log file for each run where X is the 
relative node number.  These log files contain initialization data, and any 
detailed warning or error messages that may occur during a run.  If a run is 
interrupted manually with a control-C, the current state of the message queues 
will be dumped to the log files.  If a message blocks past the user definable panic 
time, the state of the queues will also be dumped and the run will be gracefully 
aborted in most cases. 
 
2.2  The synchronous TCP mode 
 
On Unix clusters, the MP_Lite module is written using the sockets interface to 
the TCP/IP layer.  The simplest method of implementing a message-passing 
system is to increase the size of the TCP send and receive buffers and use them 
to buffer all messages.  This provides the maximum throughput by minimizing 
additional buffering of messages. This is a very natural approach, since all 
incoming and outgoing packets must be buffered at this layer anyway, and it 
avoids the additional memory-to-memory copying and buffer management at a 
higher level that can hurt the performance.  It is simply a very thin layer above 
TCP, and therefore provides all the performance that TCP offers even for 
Gigabit-level networks. 
 In this mode, the asynchronous send and receive functions do nothing 
more than log the message information, letting the wait function handle the 
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actual data transfer.  This is therefore a fully synchronous system.  A system of 
message queues is used to manage any message buffering needed due to out-of-
order messages imposed either by the use of message tags or from the use of a 
wildcard for the source node in a receive.  Receiving a message from an 
unknown source requires all TCP buffers to be actively searched which can 
greatly affect the overall performance since any message sitting in a TCP buffer 
must be pushed to a receive buffer so that subsequent messages can be checked 
for a match.  Achieving high performance therefore requires the application 
programmer to avoid practices that cause extra message buffering when in time-
critical areas of the code.  The same is true for all MPI implementations. 
 While providing the maximum throughput and being easy to 
implement, this synchronous approach has one obvious deficiency.  Since it is a 
fully synchronous system, it can lock up if nodes send more information than can 
fit into the TCP buffers.  This approach is therefore only useful when the user 
can guarantee that the message traffic will not exceed the size of the TCP 
buffers.  Setting the TCP buffers to around 1 MB each can make this system 
usable for many applications, but could tax memory for large clusters.  In any 
case, the responsibility is put upon the end user to insure that the application can 
run in the given environment.   
 
2.3  The asynchronous interrupt-driven mode 
 
The default mode for running MP_Lite on Unix is a more robust method that still 
passes along the majority of the performance that TCP offers.  In this method, 
the asynchronous send and receive functions begin the data transfers then return 
control to the application without waiting for completion.  For an asynchronous 
send, a SIGIO interrupt signal is generated when data is transferred out of the 
TCP send buffer.  A signal handling routine traps all SIGIO interrupts and 
services the given message by pushing more data into the appropriate TCP send 
buffers.  An asynchronous receive will read all available data in the TCP receive 
buffer, then return control to the application.  A SIGIO interrupt is generated 
when more data arrives, and the signal handling routine services the active 
receive queues by reading the new data. 
 The wait function simply blocks until the signal handling routine 
completes the data transfer.  The blocking send and receive functions are then 
just the corresponding asynchronous versions followed by a blocking wait 
function.  The same message queuing system described in the previous section 
tracks all message buffering.  One difference from the synchronous approach is 
that the source node does not block on a send.  The wait function instead uses a 
malloc() to allocate a send buffer then copies the data from the application 
memory space.  The signal handling routine will then complete the send without 
the source node blocking, avoiding all possibility of a lockup condition that can 
occur in the synchronous approach. 
 This asynchronous module is therefore a robust system since it cannot 
suffer from the lockup condition that could happen with the synchronous 
approach.  The interrupt-driven communications are not always as efficient as 
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the synchronous communications, but performance is very good even when 
using the default TCP buffer sizes which are typically around 64 kB.  Increasing 
the TCP buffer sizes can improve the performance since less buffering is 
required and fewer signals need to be serviced. 
 
2.4 The M-VIA module 
 
M-VIA [8] is a modular implementation of the Virtual Interface Architecture 
that is being developed for Linux systems by the National Energy Research 
Scientific Computing Center.  VIA [9-10] is an industry standard that enables 
high-performance communications between nodes in a cluster through bypassing 
the operating system.  Bypassing the operating system can streamline the 
exchange of data between computers by reducing the memory-to-memory copies 
to a minimum.  However, M-VIA must then duplicate the needed functionality 
that it is replacing in the OS, by providing a reliable system for packetizing and 
delivering data across unreliable networks such as Ethernet. 
 The MP_Lite M-VIA module is programmed using the VIA API.  
While internally much different than the TCP modules, this module provides the 
same functionality to the upper layers of the MP_Lite library and uses the same 
type of message queues. 

Each node pre-posts a number of buffers to receive unexpected short 
messages. Messages smaller than 12 kB are transferred immediately to the 
destination node through these pre-posted buffers. This Eager protocol assumes 
the receive side has enough pre-posted buffers to hold the incoming messages.  
Larger messages are sent using remote dynamic memory access write (RDMA 
write) mechanisms that are extremely efficient. Each RDMA write requires 
handshaking between the source and destination nodes.  The source node sends a 
Request To Send control message that includes the message size and tag.  After 
registered the destination memory region, the receiving node replies with a Clear 
To Send control message containing the destination buffer address and the 
registered memory handle.  The source node then uses an RDMA write to put the 
message directly into the destination. 
 M-VIA provides a much lower latency than TCP, and MP_Lite passes 
this on to the application layer.  The RDMA writes also provide a much higher 
bandwidth.  With TCP, the data being transferred is copied multiple times as it is 
broken into packets and headers are added.  Each memory-to-memory copy 
strains the main memory bus, which is ultimately what gets saturated.  The 
streamlined approach of M-VIA puts less stress on the memory bus, allowing 
more of the full bandwidth to be realized. 
 MVICH [11] is a full MPI implementation that runs on M-VIA.  It is 
being developed by the same group at NERSC that is developing M-VIA.  Since 
M-VIA does not have reliable delivery implemented yet, both MVICH and the 
MP_Lite M-VIA module are not practical message-passing libraries yet.  
Implementing reliable delivery will likely degrade the performance. 
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3  Message-passing performance on Linux systems 
 
All performance evaluations were done on two test clusters.  The first contains 
two 450 MHz PCs running Linux connected by multiple Fast Ethernet interfaces 
and also a pair of Syskonnect Gigabit Ethernet cards.  The second test-bed 
contains two 500 MHz Compaq DS20 workstations running Linux.  All tests 
used the NetPIPE [12-13] benchmark, which performs a simple ping-pong test 
between two machines for a range of message sizes. 
 

Figure 2:  Throughput as a function of message size for raw TCP, the two 
                 MP_Lite TCP modules, the MP_Lite M-VIA module, and the 
                 MVICH and MPICH libraries. 
 

For slower networks such as Fast Ethernet, any message-passing library 
can deliver most of the TCP performance adequately.  Figure 2 shows that both 
the synchronous and asynchronous MP_Lite results fall directly on top of the 
TCP curve, delivering the full 90 Mbps throughput that TCP offers.  Full MPI 
implementations can lose up to 25% of this performance for slower computers, 
but do not suffer as much for faster PCs and workstations as illustrated by the 
MPICH curve in this graph.  

The major difference for Fast Ethernet networks is that the MP_Lite M-
VIA module and MVICH implementation both provide much lower latency at 
27 µs and 31 µs respectively compared to MPICH at 121 µs.  This can make a 
large difference for codes that send many small messages, and can also improve 
the performance for codes that operate in the intermediate range sending 
message of up to 10 kB in size. 
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Figure 3:  The throughput between Syskonnect Gigabit Ethernet cards on two 
                 PCs as a function of message size. 
 
 The difference between the message-passing libraries is more evident 
for faster networks such as Gigabit Ethernet where there is even more strain put 
on the main memory bus.  Figure 3 shows that raw TCP is limited to 280 Mbps, 
which the synchronous MP_Lite module can deliver to the application layer.  
MPICH loses about 25% of this raw performance, while the asynchronous 
MP_Lite module can deliver 90% of the performance for a maximum rate of 250 
Mbps.   
 The MVICH implementation delivers a maximum rate of 245 Mbps, 
which is better than MPICH.  It is still a work in progress and much better results 
can be expected in the near future.  The MP_Lite M-VIA module delivers a 
maximum bandwidth of 440 Mbps, which is double what MPICH can deliver.  
The latencies are 34 µs for MP_Lite M-VIA, 39 µs for MVICH, and 127 µs for 
MPICH. 
 The Syskonnect Gigabit Ethernet cards support jumbo frames, in which 
an MTU size of 9000 Bytes is used instead of the standard 1500 Byte MTU.  The 
raw TCP performance for jumbo frames is clearly impressive, topping out at 480 
Mbps.  However, this requires a switch that supports jumbo frames, which limits 
its use currently.  In the future, it would be nice to run the MP_Lite M-VIA 
module in conjunction with TCP jumbo frames hardware, but this capability is 
not coded into M-VIA yet. 
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4  Channel-bonding on Linux clusters 
 
Channel-bonding is the use of more than one network interface card (NIC) per 
machine in a PC/workstation cluster.  MP_Lite allows messages to be striped 
across these multiple NICs to increase the potential bandwidth between 
machines.   
 The MP_Lite TCP modules do this by simply opening up multiple 
sockets.  Since each socket has its own NIC with a unique IP number, no special 
setup is needed for the cluster switch.  The MP_Lite M-VIA module also 
supports channel-bonding in a similar manner.  This work is still under 
development, but is showing encouraging results. 
 
 

Figure 4:  Channel-bonding of 1-3 Fast Ethernet cards between two PCs for the 
                 MP_Lite TCP modules. 
 
 Channel-bonding two Fast Ethernet interfaces at the TCP level produces 
an ideal doubling of the bandwidth for PC clusters.  Adding a third card clearly 
provides little benefit.  Using Gigabit Ethernet in this environment can provide 
three times the performance of Fast Ethernet, but doubles the cost of a PC cluster 
while adding a second Fast Ethernet interface doubles the communication 
performance for a negligible increase in cost. 
 The initial MP_Lite M-VIA results in figure 5 are even more 
impressive.  Channel-bonding three Fast Ethernet interfaces provides 260 Mbps, 
or nearly an ideal tripling of the communication rate.  M-VIA still does not have 
reliable delivery implemented.  This is therefore not a usable system yet, and 



 11 

implementing reliable data transfer may affect the performance.  However, this 
performance is very encouraging at this point.   
 

Figure 5:  Channel-bonding of 1-3 Fast Ethernet cards between two PCs for the 
                 MP_Lite M-VIA module. 
 
5  Conclusions 
 
MP_Lite delivers nearly all the performance that the underlying communication 
layer offers, and it does so in a portable and user-friendly manner.  It provides 
the most common set of communication functions, and can provide up to twice 
the performance on many systems for applications that can live within these 
limitations. Its small size makes it an ideal tool for performing message-passing 
research. 
 The TCP modules provide much greater performance than can be 
attained from existing MPI implementations.  This is especially true for faster 
networks, where MP_Lite can deliver 90-100% of the performance that TCP 
offers for Gigabit Ethernet networks.  The M-VIA work is still in the preliminary 
stages, but shows great promise of reducing the latency and possibly doubling 
the effective bandwidth that can be delivered to the application layer for Gigabit-
level networks. 
 Channel-bonding two Fast Ethernet interfaces in a PC cluster can 
double the communication performance without increasing the cost greatly.  
When reliable data transfer becomes fully implemented in M-VIA, the use of 
channel-bonding should be practical for 3-4 Fast Ethernet interfaces per 
machine, providing scalability to the design of the communication network in 
low-cost clusters. 
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